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ABSTRACT
We derive an effective Rouse model for tangentially active polymers, characterized by
a constant active force tangent to their backbone. In particular, we show that, once
extended to account for finite bending rigidity, such active Rouse model captures
the reduction in the gyration radius, or coil-to-globule-like transition, that has been
observed numerically in the literature for such active filaments. Interestingly, our
analysis identifies the proper definition of the Peclet number, that allows to collapse
all numerical data onto a master curve.
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1. Introduction

By means of breaking equilibrium at the local, microscopic scale, active systems show
dynamical and collective properties that differ quite much from their equilibrium or
even driven counterparts[1, 2]. For example, a collection of active Brownian colloids
can undergo Motility Induced Phase Separation[3, 4] leading to the onset of big clus-
ters even in the absence of any attractive interaction between the particles. Similarly,
micro-phase separation has been observed in continuum models that mimic an active
bath[5]. Besides MIPS, active systems present out-of-equilibrium phases such as living
crystalline clusters [6, 7], active turbulence [8], self-assembly [9, 10] and various types
of flocking phases [11–13].
Among active systems, those made of filamentous units have particular relevance in
biological systems, example being the cytoskeleton[14] and the intracellular trafficking
network[15], chromatin[16–18], cilia arrays[19, 20] and flagella[21] as well as micro-
organisms[22–24]. At the macroscopic scale, worms collectives show interesting emerg-
ing properties[25]. More generally, technological progress in the synthesis of artificial
active chains[26–29] as well as chains of chemically active droplets[30, 31] and soft
robotic systems[32–34] make active filaments ubiquitous and open up the possibility
of a huge range of applications.
Inspired by these examples, focus has been recently put onto characterising the prop-
erties of active polymers, i.e. polymers made out of “active” monomers. In this
context, activity can be realised in different ways[35]: by means of a temperature
mismatch[36–38], correlated noise along the backbone[17, 39], completely random self-
propulsion forces (or Active Brownian Polymer)[40–43] or correlated forces, oriented
either perpendicularly[44] or along the polymer backbone[45, 46]. In this manuscript,
we focus on the last case, as it is believed to mimic the action of molecular motors
under suitable conditions [47, 48] (see Ref. [49] for counter-examples) as well as the
locomotive mechanism of worms [25, 50], that contract their segments or use lateral
protrusions to crawl or swim forward.
Notably, the way in which a tangential force can be realized is not unique. Indeed,
one can choose to consider a propulsion force (i) constant in magnitude and parallel
to the local backbone tangent[23, 46, 51–58]; (ii) constant in magnitude and paral-
lel to the bond between neighbours along the chain[59–62]; (iii) proportional to the
bond vector[45, 63–66]. Notably, these slightly different definitions leads to some dis-
crepancies in the steady state conformations. In particular, in case (i) a globule-like
transition has been reported in three dimensions[46, 55], where polymers assume more
and more compact conformations upon increasing the strength of the propulsion. So
far, a theoretical explanation of this phenomenon is lacking.
In this manuscript, we propose a minimal model of an active polymer that displays
such globule-like transition, and solve it by means of a hybrid analytical/numerical
approach. The proposed model recapitulates the central role of the choice of a con-
stant backbone propulsion and offers a way to propose a new definition of the activity,
the so-called Péclet number. In what follows, we will introduce and develop the model
more in detail. We stress that the derivation of the model does not rely on a systematic
expansion, rather we have tried to identify the ”core” that is necessary to reproduce
the phenomenology that has been reported by numerical simulations. In doing so, we
make assumption that not always can be casted in a formal expansion. That is why,
rather then discussing the details of the approximations that we do, or the ”order” of
the terms that we disregard, we assess the validity of the proposed model by comparing
its predictions against the numerical results available in the literature. Interestingly,
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Figure 1. Schematic representation of an active polymer as a succession of active beads. The self-propulsion
direction, for each monomer, has constant magnitude and is directed as the backbone tangent vector.

our model provides a remarkably good quantitative agreement with the numerical data
hence validating, a posteriori, the assumptions that we made to derive it. In partic-
ular, we will show that a minimal continuous model can be defined only if a finite
bending rigidity is included. We will further discuss consequences of the model, such
as the emergence of a master curve onto which data for filaments of different length
and activity collapse.

2. Model

We consider a tangentially active polymer, i.e. the self-propulsive force of each
monomer acts along the backbone’s tangent. In particular, we consider the case (i), as
named in the Introduction, where the propulsion force is constant in magnitude and
parallel to the local backbone tangent. The system is considered in the overdamped
limit. To exemplify, let’s imagine a necklace of active colloids, such as diffusiophoretic
Janus particles1 [67, 68], joined in such a way that the ”south” pole of a colloid is ,
at all times, in contact to the ”north” pole of the other one (see Fig. 1). While the
system composed by the polymer and the solvent is force-free, as the active colloids
are “swimmers”, there is a net force on each monomer composing the backbone of the
polymer.
As, according to our construction, the orientations of the beads are constrained, such
a force is bound to act along the tangent direction to the backbone. Further, disre-
garding the depletion of reactants or more complex interactions, the magnitude of the
force can be regarded as fixed and independent of the polymer configuration, as it
is a characteristic of the monomeric unit. The discretized, bead-spring realisation of
such an active polymer model in three dimensions has been investigated numerically
in Refs. [46, 54–57]
We remark that these results are qualitatively different from theoretical
calculations[63, 64] and are, for self-avoiding polymers, slightly yet appreciably dif-
ferent from those reported in Refs. [59, 65]. As already suggested in the literature, in
cases (ii) and (iii) the magnitude of the active force on each monomer is not strictly

1In this example we assume that the diffusiophoretic Janus particles are in the reaction-limited regime within

which diffusion is so fast as compared to the reaction rate that density gradients can be neglected and hence
the ”phoretic” interactions [67] between colloids can be disregarded.
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homogeneous and it varies within a range. Indeed, the propulsion force is split between
neighbours and each monomer (except the ones at the extremes of the polymer) gets a
contribution from each bond. The resulting force is proportional to the tangent vector:
as such, bent conformations experience a smaller propulsion than straight ones. This
difference is probably at the heart of this discrepancy, as will be highlighted by the
minimal model tackled in this paper. As such, despite the seemingly formal difference,
these qualitative discrepancies may be sufficient to identify case (i) as a different model
from (ii) and (iii), at least in three dimensions. From a modeling perspective, one may
argue that case (i) could be more suitable if monomers generate their own propulsion
or if they are individually pushed by some external agent, such as a molecular motor.
Instead, case (ii) and (iii) may be more suitable for coarse-grained representations,
where monomers are effective units and the active force may result from the stream-
ing of motors; alternatively, one may consider systems where molecular motors are
strong enough to push more than one monomer.

3. Building a continuous minimal active polymer model

In what follows, we will introduce a continuous minimal model for a tangentially active
polymer. The polymer is described as a curve r(s, t), parameterized by the dimension-
less contour position s ∈ [−N/2, N/2] that moves along the polymer backbone, which
is subject to active forces, constant in module and related to the polymer conforma-
tion. The filament is also subject to random, thermal noise η(s, t), that satisfies the
usual fluctuation-dissipation relations

⟨η(s, t)⟩ = 0
〈
ηi(s, t)ηj(s

′, t′)
〉
= 2µkBTδijδ(t− t′)δ(s− s′). (1)

3.1. Fourier representation

As we will perform most of our analytical calculations in Fourier space, we introduce
the standard decomposition in planar waves:

r(s, t) =
1√
N

∞∑
n=−∞

rn(t)e
ıkns η(s, t) =

1√
N

∞∑
n=−∞

ηn(t)e
ıkns

with kn = πn
N . We recall that the amplitudes are defined as

rn(t) =

∫ N

2

−N

2

r(s, t)e−ıknsds (2)

and that the chosen basis is not orthonormal∫ N

2

−N

2

eı(kn−km)sds = 2
sin(N2 (km − kn))

km − kn
(3)

For ηn it holds

⟨ηn(t)⟩ = 0
〈
ηn,i(t)ηm,j(t

′)
〉
= 2µkBTδijδn,mδ(t− t′) (4)
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In order to enforce the reality of r(s, t) and η(s, t) we have rn = r∗−n, ηn = η∗
−n.

3.2. Active Rouse Model

In the continuum limit, we model the active polymer by adding the constant tangential
force to the usual Rouse model

ṙ(s, t) = µQ∂2
sr(s, t) + µf0

∂sr(s, t)

|∂sr(s, t)|
+ η(s, t) (5)

µ is the mobility of the monomers with length b, f0 is the active force, Q is the strength
of the monomer-monomer interactions. We remark that Eq. (5) should be completed
with a set of boundary conditions. For the case of free ends, i.e. no forces on the head
and tail of the polymer, the boundary conditions read [69, 70]:

2Q∂sr(s, t)
∣∣∣
s=±N/2

= 0 (6)

In order to get analytical insights of Eq. (5), one typically looks for the eigenfunctions
of the operator on the rhs of Eq. (5) that are also compatible with the boundary
conditions, Eq. (6). For the case under study, this is a formidable task due to the non-
linear forcing term. In order to avoid this difficulty we propose a strong assumption
and avoid imposing the boundary conditions summarised in Eq. (6). This amounts to
introducing forces and torques on the edges of the polymer whose magnitude, direction
and time correlation are, in principle, out of control and can be determined a poste-
riori. We will discuss this issue again once we introduce the Fourier representation.
Accordingly, Eq.(5), in its Fourier representation, reads

∞∑
n=−∞

ṙn(t)e
ıkns =− µ

∞∑
n=−∞

k2nQrn(t)e
ıkns

+

∑∞
n=−∞ ıµf0knrn(t)e

ıkns√∑∞
m=−∞ kmrmeıkms ·

∑∞
n=−∞ knr∗ne

−ıkns
+

∞∑
n=−∞

ηn(t)e
ıkns

(7)

by multiplying both sides by e−ıkjs/N , using the sum rule (reported in Eq. (B5)) and
performing the integral in ds, we obtain:

∑
n

sin
(
N
2 (kj − kn)

)
N(kj − kn)

ṙj(t) = −µ
∑
n

k2nQrn(t)
sin

(
N
2 (kj − kn)

)
N(kj − kn)

+
ıµf0
N

∫ ∑∞
n=−∞ knrn(t)e

ıkns√∑∞
m=−∞ kmrmeıkms ·

∑∞
n=−∞ knr∗ne

−ıkns
e−ıkjsds+ ηj(t) (8)

Coming back to the boundary condition, Eq. (6), in the Fourier representation it reads∑
n

knrn(t)e
±ıknN/2 = 0 (9)
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and it implies a coupling between the amplitudes of the modes. In order to solve these
equations numerically we need to truncate the number of modes at n = Ncut and
hence the boundary condition can be ”absorbed” in the truncation process. Since this
procedure is not formally correct one should check a posteriori that the effective forces
and torques induced by such a choice are small enough to be neglected. In order to
exploit the Fourier analysis we need to explicitly calculate the integral on the rhs of
Eq. (8). In order to do so we rewrite the denominator as

∞∑
m=−∞

kmrmeıkms ·
∞∑

n=−∞
knrne

ıkns =

∞∑
n=−∞

k2nrn · r∗n −
∞∑

n=−∞

∑
m̸=−n

kmknrm · rneı(km+kn)s

(10)

We remark that at equilibrium, f0 = 0, and we have

⟨rn,irn,j⟩0 = δnmδij
b2N2

3π2

1

n2
(11)

Our approach here is to expand the amplitudes around equilibrium for small values of
the active force, f0b

kBT ≪ 1. Accordingy, the amplitude of the correlators among Fourier
modes can be expressed as

⟨rn,irn,j⟩ ≃ ⟨rn,irn,j⟩0 +
f0b

kBT
⟨rn,irn,j⟩1 +O

(
f0b

kBT

)2

(12)

Accordingly, substituing Eq. (12) into Eq. (10), and recalling that kn = πn
N , we observe

that the sum of the first term in the rhs of Eq. (10) is diverging in the limit n → ∞
whereas the second term remains finite. This implies that the contribution of the active
force is always null and the proposed Rouse model cannot capture the coil-to-globule
transition observed in the numerical simulations. In order to circumvent this issue,
one may assume a short wavelength cut-off at the length scale of the monomer which
would lead to a large weave-mode cut off and hence to a finite values of the sum in
Eq. (10). However, this would imply that the longer the polymer the weaker the effect
of the active force which is at odd with the numerical simulations (see Ref. [71]).

3.3. Extended Rouse Model: introducing a finite bending rigidity

In order to overcome the diverging sum in Eq. (10) we propose to add a finite bending
rigidity, W

ṙ(s, t) = −µW∂4
sr(s, t) + µQ∂2

sr(s, t) + µf0
∂sr(s, t)

|∂sr(s, t)|
+ η(s, t) (13)

since it is well known [72], that by adding a finite bending rigidity the decay of the
correlations between modes become

⟨rnr∗n⟩0 ≃

{
1
n2 n ≪ ℓp

b
1
n4 n ≫ ℓp

b

(14)
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and hence the sum in Eq. (10) will keep finite even when n → ∞. Notice that the ratio
of the bending rigidity, W , and the strength of the monomer-monomer interactions Q
identifies the persistence length

ℓp = b

√
W

Q
(15)

(where b is the monomer length) and the number of Kuhn segments [73]

Np =
bN

ℓp
(16)

The advantage of assuming a finite bending rigidity instead of truncating the sum of
the simple Rouse model in Eq. (5) relies on the fact that numerical simulations dealing
with self-avoiding polymers indeed introduce already a finite bending rigidity due
to the excluded volume interaction between next-near-neighbors. Since this bending
rigidity leads to a relatively short persistence length, in the following we will focus on
the case in which the contribution of the bending rigidity is subdominant (a part of
”regularizing” the sum in Eq. (10)). The boundary conditions in the case fo a force-
and torque-free polymer read [69, 70][

2Q∂sr(s, t)−W∂3
sr(s, t)

]
s=±N/2

= 0 (17a)[√
2QW∂sr(s, t)±W∂3

sr(s, t)
]
s=±N/2

= 0 (17b)

Also in this model, as in the previous one, we avoid imposing the boundary conditions
Eqs. (17) and, again, this amounts to introducing forces and torques on the edges of
the polymer whose magnitude, direction and time correlation are, in principle, out of
control and will be determined a posteriori. In the Fourier representation, Eq. (13)
becomes

∞∑
n=−∞

ṙn(t)e
ıkns =− µ

∞∑
n=−∞

k2n
(
Q+Wk2n

)
rn(t)e

ıkns

+

∑∞
n=−∞ ıµf0knrn(t)e

ıkns√∑∞
m=−∞ kmrmeıkms ·

∑∞
n=−∞ knr∗ne

−ıkns
+

∞∑
n=−∞

ηn(t)e
ıkns

(18)

by multiplying both sides by e−ıkjs/N , using the sum rule (reported in Eq. (B5)) and
integrating in ds we obtain:

∑
n

sin
(
N
2 (kj − kn)

)
N(kj − kn)

ṙn(t) = −µ
∑
n

k2n
(
Q+Wk2n

)
rn(t)

sin
(
N
2 (kj − kn)

)
N(kj − kn)

+
ıµf0
N

∫ ∑∞
n=−∞ knrn(t)e

ıkns√∑∞
m=−∞ kmrmeıkms ·

∑∞
n=−∞ knr∗ne

−ıkns
e−ıkjsds+ ηj(t) (19)
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As we did for the simple Rouse model, we express the boundary conditions, Eq. (17),
in their Fourier representation∑

n

[
2Qknrn(t) +Wk3nrn(t)

]
e±ıknN/2 = 0 (20a)∑

n

[√
2QWknrn(t)∓Wknrn(t)

]
e±ıknN/2 = 0 . (20b)

In the numerical solutions, the series are truncated and these conditions are imposing
two constraints on the 2N + 1 amplitudes of the Fourier modes. We assume that
these constraints can be ”absorbed” by the truncation procedure and we will check a
posteriori that the effective forces and torques that we introduce with this ansatz are
indeed disregardable. One again we have to deal again with Eq. (10): for this, we now
make the following ansatz

∞∑
n=−∞

k2nrn · r∗n︸ ︷︷ ︸
ξ0

≫ −
∞∑

n=−∞

∑
m̸=−n

kmknrm · rneı(km+kn)s

︸ ︷︷ ︸
ξ

(21)

whose validity will also be checked a posteriori. Accordingly, Eq.(19) becomes:

∑
n

sin
(
N
2 (kj − kn)

)
N(kj − kn)

ṙn(t)︸ ︷︷ ︸
Tn

=−
∞∑

n=−∞
µk2n

(
Q+Wk2n

)
rn(t)

sin
(
N
2 (kj − kn)

)
N(kj − kn)︸ ︷︷ ︸

Gn

+

∞∑
n=−∞

2ıµf0
knrn(t)

sin(N

2
(kj−kn))

N(kj−kn)√∑∞
n=−∞ k2nrn(t) · r∗n(t)︸ ︷︷ ︸

Fn

+ηj(t) (22)

where we have introduced, for convenience, the functions Tn, Gn and Fn. It is interest-
ing to notice that, at this stage, all terms contribute to the mixing of the modes, not
only the non-linear terms Fn, as one would expect, due to the lack of orthogonality of
the chosen basis.
Before proceeding at numerically solving the model, we analyze the functions Tn, Gn

and Fn in more detail. In order to do so, we focus on the behavior of these functions
close to equilibrium for which we have

⟨rnr∗n⟩0 ≃

{
1
n2 n ≪ ℓp

b
1
n4 n ≫ ℓp

b

(23)

where ℓp is the persistence length (see Eq. (15)). In the following, we focus on (lower
modes, n ≪ ℓ/b) modes for which the finite bending rigidity has not become relevant
since the higher modes (n ≳ ℓ/b) decay much faster. In particular, we look at the
relative magnitude of the terms with n ̸= j in Eq. (22), as compared to the mode
n = j.
Figure 2 shows that for Fn several modes with n ̸= j still provide quite significant
contribution to the overall sum as compared to n = j. In particular, many modes with
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Figure 2. Fn (left), Gn (center), and Tn (right) for j = 10, 100 where we assumed rn ∝ 1/n and ṙn ≃
rn/τn ≃ n where we used τn ∝ 1/n2. We remark that Fn contributions for n ≃ 1 are still relevant even for
j = 100. In contrast, for Tn and Gn once j = 100 the modes with n ≃ 1 are disregardable.

n ≲ j provide significant contributions. In contrast, for Tn and Gn the contributions
from the modes n ̸= j are much smaller and decay quickly, upon moving away from
n = j. Accordingly, we approximate the sum involving Tn and Gn with the term
with n = j whereas we keep the full sum for Fn. This approach is not ”exact” and its
validity will be checked a posteriori by comparing it against the numerical simulations.
Hence we can rewrite Eq. (22) as

ṙj(t) = −µk2n
(
Q+Wk2n

)
rn(t) +

∞∑
n=−∞

2ıµf0knrn(t)√∑
n k

2
nrn(t) · r∗n(t)

sin
(
N
2 (kj − kn)

)
N(kj − kn)

+ ηj(t)

(24)
Eq. (24) represents our minimal model for the active polymer with bending. We

remark that for f0 = 0 our model reduces to the standard Rouse model with fi-
nite bending rigidity. Finally, recalling that kj ≡ jπ/N where N is the number of
monomers, we can rewrite Eq. (24) as

ṙj(t) = −µn2(QN +WNn2) +

∞∑
n=−∞

2
π ıµf0nrn(t)√∑
n n

2rn(t) · r∗n(t)
sin

(
π
2 (j − n)

)
j − n

+ ηj(t) (25)

We note that the last expression is independent of the polymer length N , since N only
appears in QN = Qπ2/N2 and WN = Wπ4/N4 which, together with f0 are the three
parameters governing the dynamics of the system. In other words, we can numerically
solve (a finite set of) Eqs. (25) for different values of QN ,WN .Given that

ℓp = b

√
W

Q
=

Nb

π

√
WN

QN
(26)

and using ℓpNp = Nb leads to

Np = π

√
QN

WN
(27)

Accordingly, the ratio QN/WN , is proportional to the number of Kuhn segments.
We numerically integrate these equations using the Euler algorithm, and compute the
gyration radius from the steady state value of the correlations among the modes (see
Appendix A).
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4. Comparison of the gyration ratio predicted in the theory with the
gyration ratio from computer simulations

Using the definition of the Kuhn length, the equilibrium expression of the gyration
radius for a Gaussian polymer reads [72]:

RG = ℓp

√
Np

6
(28)

We aim to compare the predictions of the minimal model Eq. (24) with the results of
numerical simulations, reported in the literature[46]. In this context, it is convenient
to express the gyration radius (whose dependence on the amplitude of the modes is
reported in the Appendix A) in terms of QN and WN

RG =

√
πkBT

2QN

(
WN

QN

) 1

4

(29)

where we used Eqs. (15), (16) and Q = 3kBT/b
2, as in Ref. [72]. Since, as mentioned,

Eq. (24) depends only on f0, WN and QN , it is tempting to cast the model predictions,
as well as the numerical data, in terms of these quantities. Indeed, we find that for
the extended Rouse model Eq. (24), the ratio between the gyration radius of an active
polymer and its equilibrium value, RG(N,Pe)/RG(N, 0), collapse onto a master curve
if plotted against the following quantity

PeR =
f0RG

kBT
=

f0ℓp
kBT

√
Np

6
=

f0b

kBT

√
π

2

kBT

b2QN

(
WN

QN

) 1

4

(30)

that is indeed a function of f0, WN and QN ; b is the monomer size. Eq. (30) shows
that polymers with a longer persistence length, characterized by a larger value of RG,
will be also characterized, at fixed f0, by a larger value of PeR (see also Appendix D).
Fig.3 reports the model predictions (blue circles) as well as data from simulations of
Gaussian (pink downward triangles) and self-avoiding (orange upward triangles) active
polymers.
As shown, plotting RG(N,Pe)/RG(N, 0) as a function of PeR leads to a collapse of
all data. In each curve, we detect a crossover from a plateau to a decay: in the first
regime the gyration radius does not depend on the Peclet number, whereas in the
second regime the gyration radius decreases with activity, as a signature of a coil-to-
globule transition.
Moreover, the data of Rouse model can be well fitted by the following curve (bottom
dashed line in Fig.3)

RRouse
G (PeR) =

(
1 +

PeR
15

)−0.21

(31)

whereas the data for the self-avoiding polymer are better fitted by the following curve
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Figure 3. RG normalized by its equilibrium value as a function of PeR Eq. (30). Triangles are the data
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predictions of the Rouse model with bending rigidity Eq. (24) with Q = 0.1 and W = 0.001 (blue), Q = 0.1

and W = 0.002 (red) and Q = 0.2 and W = 0.001 (grey). The dashed lines are a fit to the Gaussian polymer
data (pink triangles) with the fitting function Eq. (31) and to the SAW polymer data (orange triangles) with

the fitting function Eq. (32).

(top dashed line in Fig.3)

RSAW
G (PeR) =

(
1 +

PeR
15

)−0.176

(32)

The scaling functions in Eqs. (31),(32) on the one hand confirm that the Péclet number
defined in Eq. (30) is the proper dimensionless number capturing the collapse of the
active polymers. On the other hand, they also capture that the value of PeR at which
the crossover from plateau to collapse occurs is around PeR ≃ 15 i.e. the “advective”
term f0RG should indeed be quite larger then the thermal energy in order to be able
to detect the collapse. More in detail the constraint PeR ≫ 15 can be read as

f0b

kBT
≫ 15

√
6

N

√
b

ℓp
(33)

which implies that longer N ≫ 1 and stiffer ℓp ≫ b polymers require a weaker value
of f0 to fulfill the condition in Eq. (33).
Finally, our model has been derived by means of some approximations. In particular
the ansatz in Eq. (21) needs to be verified a posteriori. We report such verification in
Fig. 4.
In the left panel of Fig. 4 we show the test of the assumption as a function of the
normalised coordinate along the chain s/N at different values of f . Indeed, the ratio
ξ/ξ0 is small everywhere for f ≲ 10 and, for f ≥ 10, it increases only in a small region
close to the boundaries: overall the condition ξ ≪ ξ0 remains satisfied. Further, we
verify, in the right panel of Fig. 4, that the net force that we apply at the ends is much
smaller than the force applied at the middle of the backbone, even at large values of
PeR.
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Figure 4. Check of the expansion assumption Eq. (21). Left panel: the value of the force is encoded in color
code f = 0, 0.1, 1, 5, 10 for black,red,green,cyan and ℓp/b = 0.1 Right panel: ξ/ξ0(s = ±N/2) as a function of

the external force.

5. Conclusions

In our work we have derived and analyzed an active Rouse model, extended to include
finite bending rigidity, that retrieves one of the striking features of the tangentially
active polymers with constant propulsion force: namely the collapse of the gyration
radius upon increasing the active force on the backbone. The good quantitative agree-
ment between the numerical integration of the active Rouse model and the simulations
published in the literature allows us to derive few conclusions. First, our analysis leads
us to identify PeR as the relevant dimensionless number that allows to collapse all data
onto a master curve. Second, once collapsed, the data can be fitted with a simple func-
tion that indeed may be employed to make predictions on the collapse of tangentially
active polymers. Third, our model identifies the (normalized) tangential force as the
term responsible for the correlations among the amplitudes of the Rouse modes. Such
non-vanishing correlations indeed lead to the collapse of the gyration radius. Fourth,
our model shows that in a pure active Rouse model, without bending rigidity and with
an infinite number of modes, the active term would become vanishingly small due to
the divergence of the denominator. On the one hand, one could set a cut off for the
Rouse modes at some n value. We show that, alternatively, a finite bending rigidity is
sufficient in order to keep the active term finite.
However, it is also interesting to notice that the “head-propulsion”, i.e. whether the
free ends of the filament are self-propelled or not, has been shown to play a significant
role on the steady-state conformations in case (i)[55, 57] where, for coherence, the
ends are usually set as passive. On the contrary, in case (ii) and (iii) ends beads
are always active. It would be interesting to elucidate the extent of the influence of
this aspect, especially towards modelling real biophysical systems. Indeed, as worms
and other filamentous organisms live in complex environments[74], it will be of capital
importance to develop models able to capture the essential features of their locomotion,
for robotic systems[75] as well as for novel generation of filtering devices[76].
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Appendix A. Gyration tensor

The gyration tensor is defined as:

Sij(t) =
1

bN

∫ N

2

−N

2

(ri(s, t)− r0,i(t))(rj(s, t)− r0,j(t))ds (A1)

where r0(t) is the location of the center of mass. Exploiting the fact that r is a real
number, r∗m = r−m, then in the Fourier representation S reads:

Sij(t) =
1

N2

∫ N

2

−N

2

[∑
n

∑
m

rn,i(t)r
∗
m,j(t)e

ıknse−ıkms − r0,i(t)
∑
n

r∗n,j(t)e
−ıkns

− r∗0,j(t)
∑
n

rn,i(t)e
ıkns + r0,ir

∗
0,j

]
ds (A2)

that, using the sum rule in Eq. (B5), reads:

Sij(t) =
1

N2

∫ N

2

−N

2

∑
n

rn,i(t)r
∗
n,j(t)− r0,i(t)r

∗
0,j(t)ds

=
1

N

∑
n

rn,i(t)r
∗
n,j(t)− r0,i(t)r

∗
0,j(t)

=
1

N

∑
n̸=0

rn,i(t)r
∗
n,j(t) (A3)

Finally, the gyration radius is defined as R2
G = TrS and, in equilibrium [72], the

amplitudes of the modes is given by Eq. 11. Hence the gyration radius reads

Req
G = b

√
N

6
(A4)
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Appendix B. Sum Rule

Coherently with Eq. (3.1) we define

rn(t) =
1√
N

∫ N

2

−N

2

r(s, t)e−ıknsds (B1)

Substituting Eq. (3.1) into Eq. (B1) we get:

rn(t) =
1

N

∫ N

2

−N

2

∞∑
m=−∞

rm(t)eıkmse−ıknsds (B2)

and using ∫ N

2

−N

2

eıknse−ıkmsds = 2
sin(N2 (km − kn))

km − kn
(B3)

we get:

rn = rn +
2

N

∑
m̸=n

sin(N2 (km − kn))

km − kn
rm (B4)

that leads to:

2

N

∑
m ̸=n

sin(N2 (km − kn))

km − kn
rm = 0 (B5)

Appendix C. Convergence of RG upon increasing the number of modes

Fig. C1 shows the convergence of RG upon increasing the number of Rouse modes.

 0.7

 0.75

 0.8

 0.85

 0.9
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Figure C1. Convergence of RG upon increasing the number of modes (model with bending) for βf0b = 0, 5, 10

and ℓp/b = 0.1 standing bigger points for larger values of f0.
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Appendix D. Effective force f̃0

It is interesting to notice that the denominator in the forcing term (see Eq. (25)) has
the form

∞∑
n=−∞

n2|rn(t)|2 = 2

∞∑
1

n2|rn(t)|2 (D1)

where we accounted for the fact that |r0| < ∞. For a semi-flexible polymer at equilib-
rium we have

|rn(t)|2 ≃
1

n2
(
1 + n2

n2
p

) (D2)

and hence the sum reads

∞∑
n=−∞

n2|rn(t)|2 = 2

∞∑
1

1

1 + n2

n2
p

∼ Nb

ℓp
(D3)

where we used np =
Nb
ℓp
. This already provides an interesting scaling of the active force

with the persistence length. Indeed the relevant parameter is

f̃0 ≃ f0

√
ℓp
Nb

(D4)

Accordingly, using Eqs. (28),(16), the Péclet number reads:

PeR = βf0RG = βf̃0
bN√
6

(D5)
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